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Abstract—Over the last years, increasing attention has been
given to creating energy-efficient software systems. However,
developers still lack the knowledge and the tools to support them
in that task. In this work, we explore our vision that energy
consumption non-specialists can build software that consumes
less energy by alternating, at development time, between third-
party, readily available, diversely-designed pieces of software,
without increasing the development complexity. To support our
vision, we propose an approach for energy-aware development
that combines the construction of application-independent energy
profiles of Java collections and static analysis to produce an
estimate of in which ways and how intensively a system employs
these collections. By combining these two pieces of information,
it is possible to produce energy-saving recommendations for
alternative collection implementations to be used in different
parts of the system. We implement this approach in a tool named
CT+ that works with both desktop and mobile Java systems, and
is capable of analyzing 40 different collection implementations of
lists, maps, and sets. We applied CT+ to twelve software systems:
two mobile-based, seven desktop-based, and three that can run
in both environments. Our evaluation infrastructure involved a
high-end server, a notebook, and three mobile devices. When
applying the (mostly trivial) recommendations, we achieved up
to 17.34% reduction in energy consumption just by replacing
collection implementations. Even for a real world, mature, highly-
optimized system such as Xalan, CT+ could achieve a 5.81%
reduction in energy consumption. Our results indicate that
some widely used collections, e.g., ArrayList, HashMap, and
HashTable, are not energy-efficient and sometimes should be
avoided when energy consumption is a major concern.

I. INTRODUCTION

The extensive adoption of battery-based devices such as
mobile phones, smart watches, and laptops greatly increased
the importance of energy efficiency as a quality attribute
to be acknowledged by application software developers [1].
Moreover, recent work by Manotas et al. [2] concluded that,
based on responses from hundreds of professionals from
industry, developers are interested in building more energy-
efficient software, even in scenarios where energy is not an
obvious concern, such as desktop application. Chowdhury et
al. [3]] pointed that energy-aware projects tend to be larger
than the ones that does not take energy into consideration
and that the developers responsible to commit energy changes
usually are specialists. One consequence of the widespread
interest in energy consumption is that many developers who
are not specialists also want their applications to consume
less energy. These developers have ample knowledge and
experience with their development platforms of choice, but
lack both knowledge and tools when it comes to making

applications energy-efficient [4]. In this paper, we cater to
developers facing this challenge.

Non-trivial software systems have parts where it is possible
to use different collections, API calls, concurrency control
mechanisms, and libraries by means of simple source code
transformations. We call these parts energy variation hotspots
when these transformations can lead to reduced energy con-
sumption. For example, the Java language has 9 different con-
crete implementations of hash tables, with different guarantees
in terms of scalability, thread-safety, and memory efficiency.
Previous work [S] has shown that an insertion operation in
one implementation, ConcurrentHashMap, can consume
less than 1/3 of the same operation in another implementation,
Hashtable. This means that replacing one implementation
by the other can lead to energy savings. Moreover, this result
also applies to other languages [6], API usage [7]], types of
constructs [8]], and usage scenarios [9].

Unlike low-level abstractions, such as voltage and frequency
scaling, energy variation hotspots are familiar to developers.
Moreover, they make it easy to experiment with different op-
tions to analyze their impact on energy, since there are readily-
available alternative implementations. Furthermore, the cost of
replacing one implementation by another tends to be low, since
they usually share common specifications. For example, in the
aforementioned study [3]], replacing uses of Hashtable by
ConcurrentHashMap required changing a single line of
code per Hashtable object in most cases. Analogously, in
a study targeting Haskell’s thread-management constructs [8]],
replacing uses of Haskell’s default thread instantiation prim-
itive, forkIO, by an alternative, forkOn, that binds the
created thread to a specific processor required modifications to
a single line of code per use of forkIO. forkOn exhibited
lower energy consumption in most of the experiments.

Here we share our vision about solutions for analyzing
the energy behavior of alternative collection implementations
in a manner that is application-independent and friendly for
non-specialists. We propose an approach for energy-aware
development that combines the construction of application-
independent energy profiles [9] of Java collections and static
analysis to produce an estimate of in which ways and how
intensively a system employs these collections. By combining
these two pieces of information, it is possible to produce
energy-saving recommendations for alternative collection im-
plementations to be used in different parts of the system. We
have instantiated this approach in a tool named CT+. This tool
works in two steps. First, it automatically runs multiple micro-



benchmarks in an application-independent manner for the
Java collections available in a certain execution environment.
With data from these micro-benchmarks, it builds energy
consumption profiles [9] for the implementations of these
collections. An energy profile provides us with a grade that
can be used to compare the energy consumption of different
implementations of the same abstract operation. After building
the energy profiles, the second step consists of performing a
static analysis on the system to be optimized, so as to estimate
the frequency of use of multiple collection operations. The
third step consists of recommending the most efficient imple-
mentation for each energy variation hotspot. Finally, CT+ can
optionally apply the recommended changes automatically.

We applied CT+ to 12 software systems, seven targeting a
desktop environment, two targeting a mobile environment, and
three that work in both. With no prior knowledge of the appli-
cation domains or the system implementations, it was possible
to reduce the energy consumption of a software system up to
17.34% just by replacing collection implementations. Even for
a real world, mature, highly-optimized system such as XALAN,
CT+ could achieve a 5.81% reduction in energy consumption
by employing this automated approach. The results of our
study highlight the need to re-assess the adoption of some
widely popular, poorly-optimized collections from the Java
Collections Framework, such as ArrayList, Hashtable,
and HashMap. Recommendations to replace uses of these
collections by more efficient alternatives were common in our
evaluation. In addition, there was not a single case where either
of the latter two was recommended. The data related to this
work can be found at https://energycollections.github.io/.

This study is an improved version of a previously published
short paper [10]. Section provides more details on the
improvements made for this version.

II. JAVA COLLECTIONS

Collections are widely used in applications, on mobile and
desktop environments. Java’s collections are usually subdi-
vided in three different APIs: Lists, Maps, and Sets. These
categories are different in several points but the main factors
that distinguish them are: Lists are ordered and indexed (with
possible duplicates), Sets are unordered and do not admit
duplicates, and Maps are based on key-value pairs and hashing
(keys are unique but values can be duplicated). In Java, each
collection has multiple implementations.

Collections can be implemented in a number of different
ways and can have a non-negligible impact on energy
consumption. The usual way to use collections in Java
is through the Java Collections Framework (JCF). Yet,
previous work [S], [9], [11] has shown that alternative
implementations can have a positive impact on the energy
consumption of applications. Based on that, for this research
we are looking at collections from three different sources:
Java Collections Framework [12], Apache Commons
Collections [13]], Eclipse Collections [14]. To get a glimpse
at the usage of these alternative implementations in
Java projects, in January 2019 we executed a query on
GitHub based on the package names of Eclipse Collections

TABLE I
JCF COLLECTIONS ACROSS GITHUB JAVA PROJECTS.

Thread . .

Safety Package name (java.util) Occurrences
.ArrayList 35,278,092
.HashMap 16,602,391
.HashSet 6,470,505
.LinkedList 3,763,660

Unsafe .LinkedHashMap 1,470,500
.TreeMap 1,122,886
.TreeSet 950,890
.LinkedHashSet 689,397
.WeakHashMap 271,852
Sum of thread unsafe collections 66,620,173
.Vector 4,731,762
.Hashtable 1,994,173
.concurrent.ConcurrentHashMap 1,119,704

Safe .concurrent.CopyOnWriteArrayList 237,541
.concurrent.CopyOnWriteArraySet 70,680
.concurrent.ConcurrentSkipListMap 39,012
.concurrent.ConcurrentSkipListSet 26,826
Sum of thread safe collections 8,219,698

(org.apache.commons.collections) and Apache

Common Collections (org.eclipse.collections).
The results showed that these collections are in widespread
use, with 1,022,778 occurrences for Apache Common
Collections and 466,394 for Eclipse Collections.

Collection implementations that can be safely used by
several concurrent threads are considered to be “thread-safe”.
This safety usually comes with extra complexity or inferior
performance, which might favor the use of “thread-unsafe”
collections. In this work, we consider that it is never acceptable
to replace a use of a thread-safe collection implementation
by a thread-unsafe one. Conversely, although it is possible to
replace a use of a thread-unsafe collection implementation by
a thread-safe one, this is not efficient in practice [3].

JCF collections, both thread-safe and thread-unsafe, are
in widepspread use. We conducted another simple query
on the adoption of our selected collection implementations
on Github Java projects. The results suggest that thread-
unsafe collections are used more often than thread-safe col-
lections by a fair margin (66,620,173 and 8,219,698 occur-
rences, respectively). The most widely used unsafe collection,
java.util.ArrayList, is used more than four times the
sum of all thread-safe collection uses. Table [[l summarizes the
results of our queries.

Creating thread-safe collections based on thread-unsafe
collections using the JCF is straightforward: one just needs
to use specific static methods from the Collections
class to create synchronized Lists, Maps, and Sets. In
this work, we labeled those wrapped, thread-safe collections
as follows: ”Synchronized” + original collection name, e.g.,
SynchronizedArrayList.

III. RELATED WORK

We group the related work on the energy efficiency of
collection implementations in terms of empirical studies and
recommendation tools.

Empirical studies. Hasan er al. [9] compared the energy



consumption of collections in Java. They built an energy
consumption profile for each collection they analyzed, aiming
to answer which implementation of each collection (Lists,
Sets, and Maps) consumed less energy. They used that
information to manually improve the efficiency of a set of
selected applications. Pinto et al. [3] studied the thread-safe
Java Collections on two different desktop machines. The
authors found that the cost of each operation varies widely
among different implementations of the same collection. For
instance, the authors found energy improvements of 66%,
when changing to a more energy efficient implementation
of a map. Saborido et al. [15] compared two Android-
specific collection implementations of Maps: SparseArray
and ArrayMap. These implementations were developed to
be more efficient than HashMap. In summary, ArrayMap
was considered worse than HashMap when optimizing energy
consumption and SparseArray was considered better when
the keys are primitives types.

Here we investigate the impact of software constructs in
energy consumption while also offering a recommendation
tool that can be used by developers to save energy. Therefore,
this work builds upon knowledge produced by previous studies
to make recommendations in an automated manner.

Recommendation tools. Manotas et al. [16] developed a
general purpose framework called SEEDS to guide developers
on the laborious work of creating energy-aware software sys-
tems. They instantiate the concepts of that framework with the
objective of analyzing the consumption of different collection
implementations from the JCF. While our proposal uses the
concept of energy profile and static analysis to analyze the
applications and suggest an implementation of a collection,
SEEDS leverages dynamic analysis, executing each different
collection for every application and comparing their energy
consumption. Furthermore, it did not consider the impact of
multithreading and only targeted a desktop environment.

Pereira et al. [17] implemented an energy-aware tool called
jStanley, aiming to recommend the best collection implemen-
tation among several over the JCF. jStanley was implemented
as an Eclipse plugin and works using experimental results from
their previous work [18]. It does not account for the impact
of loops, does not work on a desktop environment, and does
not differentiate thread-safe and thread-unsafe collections.

This work is an improved version of our previous work
with energy consumption of JFC [19]. We improved on this
work by several different means such as: (i) Support to
mobile applications; (ii) More operations (19 vs 9) and more
collection implementations (40 vs 11) were used to help better
analyze the energy consumption; (iii) Support to thread-unsafe
collections; (iv) More robust intraprocedural static analysis; (V)
Two alternative sources of implementations to the JCF; and,
(vi) Twelve software systems (vs two) were analyzed.

IV. OVERVIEW OF THE PROPOSED APPROACH

The proposed approach is organized in three phases: (1)
creation of the energy profiles, (2) collection usage analysis,
and (3) recommendation of source code modifications that
have the potential to reduce energy consumption. Figure
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Fig. 1. An overview of our approach. Phase I is application-independent
whereas phases II and III also use information about the system under analysis.

provides an overview of our approach. In this section, we focus
on its high level explanation. Then in Section [V| we present
our instantiation of this approach in the CT+ tool. The three
phases are detailed next.

Phase I: Creation of Energy Profiles. Here we select a
group of programming constructs to analyze and build their
energy profiles. This selection determines the energy variation
hotspots of the applications that will be analyzed in phase
II. Good choices are constructs that are used intensively and
that have alternative implementations. As mentioned before,
collections, concurrency control mechanisms, and APIs are
examples of potential candidates.

Having selected the candidate constructs and their alterna-
tive versions, it is necessary to build their energy profiles [9].
An energy profile for a construct is a number that can be
used to compare it to similar constructs under the same
circumstances. This idea can be explored in diverse situations.
For example, previous work [20], [21], [22]] computed energy
profiles for the colors that can appear in an OLED screen and
employed this information to suggest color schemes for smart-
phone applications that spend less energy. This improvement
could be achieved without the need to precisely measure the
amount of energy consumed by each color individually.

Energy profiles can be produced by executing several
micro-benchmarks to collect information about the energy
behavior of these programming constructs in an application-
independent way. This step needs only to be performed once
for a given construct, per execution platform. The results can
then be reused across multiple software systems employing
these constructs. In Section [V] we define energy profiles in
a more precise manner for the specific context of collection
implementations.

The energy profile created on phase I is used as input to
make the recommendation in phase III.

Phase II: Collection Usage Analysis. This phase extracts
information about how the target software systems use the
selected programming constructs, for example, usage context
and frequency of use. This information can be extracted
either dynamically or statically. In our instantiation of this
approach, we relied on a purely static approach. This has the
advantage of being platform-independent and not requiring
multiple executions of the system under analysis. On the other
hand, it is more prone to imprecision, since it is not possible
to know how often an operation will be executed until the
system 1is actually executed.

The output of this step is heavily dependent on the kind of



construct, such as: package, method, class, and line of code
where the construct is used, the amount of times its instantiated
or invoked, thread running the programming construct, if the
invocation of the programming construct is placed inside a
loop, among many others. The data collected from phase II is
used as input to make the recommendation in phase III.

Phase II1: Recommendation. This phase combines the energy
profiles and the results of the usage analysis, using the data
from phases I and II as input. Different formulae can be
employed in this phase. A straightforward approach is to
linearly combine the energy profiles with the frequency of
use of each alternative constructs. Each of these combinations
will yield an energy consumption number that can be directly
compared to determine the most energy-efficient alternative.
This is the approach we employed in our experiments. We
make it more concrete in the next section.

V. INSTANTIATION FOR JAVA COLLECTIONS

Our approach focuses on Java collections and is instantiated
in a tool named CT+. CT+ analyzes Java programs in desktop
and mobile environments, and recommends collections that
could potentially reduce energy consumption.

Phase I: Creation of Energy Profiles. In this phase, we build
the energy profiles of the collections. These profiles are based
on implementations and operations of three kinds of collec-
tions: lists, maps, and sets. We use interchangeable collection
implementations for each kind of collection and their opera-
tions to create energy profiles that allow these implementations
to be compared from an energy consumption standpoint. In this
section, we define a collection implementation C' abstractly
as a tuple (N, T, S,01,02,...,0,), where N is the name of
the collection, 7' is the type of the collection, with T &
{List, Set, Map}, S € {ThreadSafe, NonThreadSafe},
and o;, 1 < i < n are the n operations of the collection im-
plementation. In this context, an energy profile for a collection
implementation is an n-tuple, where each of its elements is a
number that can be used to compare the energy consumption
of the same operations for different collection implementations
under the same execution environment. An energy profile for
a collection implementation C' is produced by a profiler, a
simple function that, in a given execution environment and
under a set of workloads, produces an energy profile:

profiler(C, env, wy, wa, ...,w,) = (e1, €2, ...ey)

where env abstractly represents the execution environment in
which the profiler is running (machine, operating system, JVM
version), w;, 1 < 7 < n, represents the workload applied to
each operation o; in C, and e; is the energy consumption value
for operation o;. Energy profiles for two collections C, and C},
can be compared as long as C,. T = Cp.T and C,.S = C}.S.
In other words, we cannot, for example, compare profiles
for a list and a set, nor compare the profile for a thread-
safe collection to the profile of a non-thread-safe collection.
We assume that collections whose 7" and S elements are
equal have the same operations and, from an implementation
standpoint, are functionally equivalent. This is true in practice

for the vast majority of the collection implementations in the
JCF, with very few exceptions, e.g., WeakHashMap. Table
presents all implementations we analyzed in this work.

We build energy profiles by running micro-benchmarks
applied to the operations of each collection implementation.
The executions were made in a specific cycle of operations.
We first perform insertions, then we iterate over the whole
collection, and finally we remove all elements previously
stored in the collection. In cases where more than one type of
insertion or removal is necessary, e.g., lists, where it is possible
to insert at the start or end, we pair the classified insertions
and removals before the initial sequence (e.g., “insert (start)”
and “removal (start)”’). The energy consumption was collected
throughout each operation. We used this approach to make
sure that removals and iterations are measured without the
overhead imposed by an insertion operation.

As mentioned above, on lists it is possible insert or remove
an element at a specific position, differently from a map or
a set. To reflect this behaviour, we distinguish operations
to insert or remove list elements at the start, middle, or
end of the list. We also consider the ‘“default” operation
for insertion or removal. For example, for insertions, it is
the add method. We iterate over lists using three different
approaches: a seeded randomly generated number as index, an
explicitly created iterator, and a for loop. Table [[II| contains
a summary of the operations we analyze to build the energy
profiles. Although there are other possible operations (e.g.,
List.removeAll ()), they were not used on this study.

To execute the micro-benchmarks and build the energy
profiles we developed two different energy profilers, one for
the desktop environment and one for the mobile environment.
We had to create two different applications because these
environments use different methods for gathering energy data
and are implemented in different platforms. Nevertheless, we
employed the same methodology to collect the energy con-
sumed by each operation on a specific collection implemen-
tation. In addition, both profilers were built according to the
recommendations of Georges et al. [23] for Java performance
evaluation. The Desktop Profiler is a simple Java program that
uses the jJRAPL [24] library to measure energy consumption
on desktop applications. It works on Intel architectures (Sandy
Bridge and later). The Mobile Energy Profiler comprises
two subsystems: an Android app, responsible for executing
the micro-benchmarks for each operation of each collection
implementation, and a dashboard application, responsible for
collecting and storing the produced data. We used the Android
Power Profiler to measure energy consumption on the mobile
applications. That limits our profiler implementation to only
work on Android devices with version 5 or later.

The energy profilers containing the energy cost of each
operation will be used on Phase III to make recommendations.

Phase II: Collection Usage Analysis. CT+ employs an
inter-procedural dataflow static analysis to gather information
about the frequency of use and the context in which the
collection operations are invoked. For a given program starting
point, e.g., the main method, it analyzes all the paths in the



TABLE II
THE SELECTED IMPLEMENTATIONS TO BE USED IN THE EXPERIMENTS. THREE DIFFERENT SOURCES WERE USED: JAVA COLLECTIONS FRAMEWORK,
EcCLIPSE COLLECTIONS AND APACHE COMMONS COLLECTIONS

. Thread .

Collection Implementations

Safety
List Safe Vector, CopyOnWriteArrayList, SynchronizedArrayList, SynchronizedList, and SyncronizedFastList.

Unsafe ArrayList, LinkedList, FastList, CursorableLinkedList, NodeCachingLinkedList, and TreeList.

Safe Hashtable, ConcurrentHashMap, ConcurrentSkipListMap, SynchronizedHashMap, SynchronizedLinkedHashMap,
Map SynchronizedTreeMap, SynchronizedWeakHashMap, ConcurrentHashMapEC, SynchronizedUnifiedMap and StaticBucketMap.

Unsafe HashMap, LinkedHashMap, TreeMap, WeakHashMap, UnifiedMap, HashedMap,

Safe ConcurrentSkipListSet, CopyWriteArraySet, SetConcurrentHashMap, SynchronizedHashSet,
Set SynchronizedLinkedHashSet, SynchronizedTreeSet, SynchornizedTreeSortedSet and SyncronizedUnifiedSet.

Unsafe HashSet, LinkedHashSet, TreeSet, TreeSortedSet, and UnifiedSet.

program method call graph that can be reached from there.
This analysis aims to identify calls to collection operations that
appear within loops, including loops from different methods.
One operation can be counted more than once, depending on
its context. For example, the method “bar ()” can be called
from the method “foo () ” in different parts of the code. One
invocation of “bar ()” might be inside a loop while another
one may not be involved in loops.

Taking loops into account is important because operations
inside them are usually executed several times and thus
consume more energy than ones not invoked within loops. In
our implementation, we use the nesting level of the loops as a
heuristic to give weights to the operations that are performed
within them. Even though there are some approaches to
determine loop bounds (e.g., [25]), these works (1) do not
cover all loop usage scenarios for languages such as Java,
where arrays can be allocated dynamically, and (2) typically
require program execution. We then opted to use a more
conservative approach and only take into account the nesting
level of the loops.

Phase III: Recommendation. For each collection implemen-
tation object in the code of a program under analysis, our
tool makes its recommendation using (i) the energy profile
information for that collection implementation (ii) the number
of occurrences of the collection operations in the source code
related to that specific object, (iii) and whether those occur-

TABLE III
OPERATIONS USED ON EACH COLLECTION.

Collection  Operation Types
insertions default, start, middle, and end
List iterations random, iterator, and loop
removals default, start, middle, end, and object
insertions default
Map iteration iterator and loop
removal default
insertions default
Set iteration loop
removal default

rences appear within loops or not. More specifically, for each
object ¢ which is an instance of a collection implementation C
and each path in the program call graph where an operation on
¢ is invoked, CT+ calculates its energy factor EF' according to
the following simplified formula, considering every collection
implementation C’ such that C.T = C'.T and C.S = C’.S:

EF(C',c)= >"  e;* NL(c.o;)+

i=
Yo 2 €5 (La(eoj) + DT 1)
In this formula, n is the number of operations in C, e; is the
it" element of the energy profile of C”, notation c.o; indicates
operation o; from collection implementation C’ invoked at
object ¢, N L is a function that yields the number of non-loop
occurrences of o; targeting c for every path in the program
call graph, L yields the number of occurrences of o; applied
to ¢ appearing within a loop of nesting level d for every
path in the program call graph, and m is the maximum loop
depth of the program. The nesting level of a loop affects
the energy factor by increasing the exponent which dictates
the weight of operations appearing within loops. The “+1”
in the exponent and in the innermost summation guarantee
that operations appearing within a loop always have a greater
weight that those that do not. The “-1” within the innermost
summation guarantees that operations not appearing within
loops (L4(c.05) = 0) get cancelled out.

CT+ makes its recommendation based on the energy factors
of the collection implementations. It gives as output an ordered
list of collection implementations with better energy footprint
than the original collection.

Implementation. The implementation of CT+ is based on
WALA [26], a static analysis library developed by IBM. Since
a collection may be thread-safe or not, we employ WALA’s
built-in type inference and points-to analysis to discover the
concrete types of objects. This is also useful to support
recommendations that account for collection objects being
passed as method arguments.

VI. EVALUATION

We applied our evaluation to a number of software systems,
running on multiple execution environments, comparing the
energy consumption of the original version with a modified
one, according to the recommendations produced by our tool.



A. Research Questions

Among Java’s diverse collection implementations, devel-
opers may opt to use the most popular ones, even though
popularity is not necessarily a proxy to energy efficiency. To
investigate address this issue, we experimented with several
collections available in the JCF, as well as several alternative
implementations. Furthermore, our approach is based on the
assumption that the energy profiles of the analyzed collections
can be different depending on the underlying execution plat-
form. This concern is particularly important due to the great
diversity of devices and operating system versions available
for use. Based on these considerations, with this study we
aim to answer the following research questions (RQs):

RQ1: To what extent can we improve the energy efficiency of
an application by statically recommending Java Collections?

RQ2: Are the recommendations device-independent?

B. Methodology

Our evaluation comprises two different execution environ-
ments, desktop and mobile. These environments differ in
terms of the available processing power and memory, use
of batteries, and measurement procedure. We employ jRAPL
to perform energy measurements in the desktop environment
and the Android Energy Profiler in the mobile environment
(Section [V)). Table [[V]presents a summary of the devices used
in this study. On the desktop environment, we executed CT+
across two different machines, a notebook (note) with an Intel
Core 17-7500U with four 2.7GHz cores, and 16GB of RAM
and a high-end server (server) with a a two-node Intel Xeon
E5-2660 v2 processor with 20 2.20GHz cores (10 per node)
and 256GB of RAM. As for mobile devices, we executed
our tool on three smartphones: a Samsung Galaxy J7 (J7),
a Samsung Galaxy S8 (S8), and a Motorola G2 (G2).

When creating the profiles, we choose to use the same
methodology as previous work [6], [9], although we leverage
a larger number of collection implementations (Table [II).
We executed the micro-benchmarks, each one representing
an operation-collection pair, and calculated their energy con-
sumption.This procedure is repeated 30 times for each micro-
benchmark, for each machine. To reduce the interference of
the JIT, we performed a warmup execution. In the warmup,
we executed up to 10% of our workload. We only started
collecting the samples after the end of the warmup period. By
doing this, we minimized JIT noise on the measurements [27]].

We analyzed seven desktop-based software systems: BAR-
BECUE, BATTLECRY, JODATIME, TOMCAT, TWFBPLAYER,
XALAN, and XISEMELE; two mobile-based software systems:
FASTSEARCH and PASSWORDGEN; and three on both envi-
ronments: APACHE COMMONS MATH 3.4 (COMMONS MATH
for short), GOOGLE GSON, and XSTREAM: These systems
were the employed in related work on energy profilling [,
[9], [17], [28]], and their workloads are available for replication
purposes. For server, we only ran TOMCAT and XALAN since
these are applications one would expect to execute in a high-
end server machine. For TOMCAT, we could not recommend
any implementation from the Eclipse Collections library. This

happened because the DACAPO suite [29] endorses the use of
Java Development Kit (JDK) to ensure the correct operation of
their benchmarks. Unfortunately, the current version of Eclipse
Collections is incompatible with JDK 6.

For TOMCAT and XALAN on the desktop development
machines, we used the same workloads (provided by DA-
CAPO) on both systems, varying only the number of threads
for each machine: 40 on server and four on note. For four
systems (BARBECUE, JODATIME, TWFBPLAYER, XISEMELE)
we used unitary tests, following the same methodology as
previous work [17]. On BATTLECRY, we executed a class
inside the benchmark designed to test it. On GOOGLE GSON
and XSTREAM we tried to exercise each Java primitive
using methods inside those systems. With APACHE COMMONS
MATH 3.4 we executed multiple statistical functions from its
APIL. As both PASSWORDGEN and FASTSEARCH are very
one dimensional software system, their workload consisted of
executing their main function (e.g., generating passwords).

Different devices require different workloads to run for
enough time for the energy measurement to have expressive
values. This adjustment was specially important when running
the mobile profiler. Whereas jJRAPL [24]] is capable of code-
level, fine-grained measurement, the Android battery dump
collects battery data at the process level. In order to mit-
igate potential imprecisions, we adjusted the mobile micro-
benchmark executions to run for at least 20 seconds.

For the experiments, we collected the results of 30 exe-
cutions of each software system. When experimenting with
thread-safe collections, we used four threads for each op-
eration; with non thread-safe collections, only one thread
was used. Since most of our samples are not normally
distributed, based on Shapiro-Wilk’s normality test [30], we
used the Wilcoxon-Mann-Whitney test [31]] to test whether
the difference in energy consumption between the original
and modified versions of each software system is statistically
significant. We did not remove any outliers. We also employed
Cliff’s Delta [32] as a measure of effect size. Wilcoxon-Mann-
Whitney test and Cliff’s Delta are non-parametric.

C. Study results

We present the results in terms of the desktop and the
mobile environments. For each one, we present first the
energy consumption results and then proceed to discuss the
recommendations that were made for each software system.
We will only present the energy results, because as mentioned
in Section most executions had a designed workload
based on the time necessary to execute it. The specific amount
of time each system took to be executed can be found at
https://energycollections.github.io/.

Desktop environment. Table [V| summarizes the energy con-
sumption for the desktop environment. The most important
column of the table is Improv, which shows how much more
energy the original version consumed, when compared to the
modified one. A positive percentage in this column indicates
that the modified version consumes less energy than the origi-
nal one. The versions of all the software systems modified ac-
cording to the recommendations of CT+ consumed less energy



TABLE IV
THE MACHINES USED IN THE EXPERIMENTS AND THEIR CHARACTERISTICS

Machine Alias RAM Chipset CPU Battery

Notebook note 16GB i7-7500U Quad-core 2.70GHz N/A

Server server 256GB  Intel Xeon E5-2660 v2 40-core 2.2 GHz N/A

Samsung J7 J7 1.5GB Exynos 7580 Octa-core 1.5 GHz Cortex-A53 3000 mAh

Samsung S8 S8 4GB Exynos 8895 Octa 4x2.3 GHz Mongoose M2 & 4x1.7 GHz Cortex-A53 3000 mAh

Motorola G2 G2 1GB Qualcomm MSM8226 Snapdragon 400  Quad-core 1.2 GHz Cortex-A7 2070 mAh
TABLE V workload. This can be justified in terms of their differences in

RESULTS FOR THE DESKTOP ENVIRONMENT. ENERGY RESULTS ARE RED
FOR THE ORIGINAL VERSIONS AND GREEN FOR THE MODIFIED VERSIONS.

Device System Improv p-value Mean(J) Stdev  Effect
Size

Babecue  4.58% 704 X2l 0s0
Battlecry  2.86% 1.573 2232 g?g 0.48

Gson 0.72% 8.07° %g?; ngé 0.57
G gsepge B0 o
JodaTime  7.13% < 2.2716 ﬁj(\)% g:;% 0.94

Tomcat 4.12% < 22716 37?1; (l)g% 0.86

Xalan s01% <2270 (0700 09 1

Xsteam  2.58%  3.122713 D0 oo

L, Tomet 4% < 22716 22 3% e
Xalan s81% <2270 SR WS o0s

than the original versions. For two of them, (TWFBPLAYER
and XISEMELE), the difference between original and modified
versions was not statistically significant. Notwithstanding, for
the remaining systems in both the note and server machines,
the difference is statistically significant and effect size is large.
According to Romano et al. [33], effect size as measured by
Cliff’s Delta can be considered large when it is > 0.474. In
particular, for XALAN in the note machine, the effect size was
1, which means that every execution of the modified version
exhibited lower energy consumption than every execution of
the original version. Among the software systems that only
ran in the note machine, JODATIME exhibited the greatest im-
provement, with the original version consuming 7.13% more
than the modified one. Hereafter, due to space constraints, this
section focuses on the results for which p—wvalue < 0.05, thus
indicating a statistically significant difference, either positive
or negative, between the original version and the modified
one. We analyze some cases where the difference was not
statistically significant in Section

The two software systems that were executed in the note
and server machines, XALAN and TOMCAT, exhibited positive
results in both scenarios. For XALAN, the original version
consumed 5.01% and 5.81% more energy than the modified
version in the note and server machines, respectively. For
Tomcat, the differences were of 4.12% and 4.3%, respectively.
We found that systems running on server consumed more
than twice the energy they consumed on note, for the same

processing power. Notwithstanding, the results were consistent
across the two machines.

Table summarizes our results for each application on
note and on server. In both machines XALAN had a sig-
nificant number of instances of Hashtable changed to
ConcurrentHashMapEC (48 and 49 times on note and
server, respectively). In fact, for both server and note, we
can observe a trend of recommendations to replace well-known
collections from the JCF (Vector, ArrayList, HashMap)
by alternatives from Eclipse Collections and Apache Com-
mons Collections. For the specific case of XALAN, among the
119 recommendations across the two desktop machines, just
three were for JCF collection implementations.

TOMCAT recommendations differed across the two ma-
chines. On note, the tool made 13 energy saving recom-
mendations, seven for collections from the JCF, and six for
collections from the Apache Commons Collections. On server,
there were 60 recommendations, 40 for Apache Commons
Collections, and 20 for JCF collections. In particular, there
were 68 recommendations to replace Hashtable, HashSet,
or HashMap by more energy-efficient alternatives and no
recommendation to use any of those. As pointed out in
Table [l these are widely-used collections. We reiterate that
Eclipse Collections could not be recommended for Tomcat
(Section [VI-B).

Among the six remaining software systems, there were
285 recommendations. From those, 282 suggested the use of
collection implementations not from the JCF, 88 from Apache
Commons and 194 from Eclipse Collections. Once again it is
possible to observe a trend of replacing well-known collections
such as Hashtable, HashMap, and ArrayList by more
energy-efficient but less-known alternatives.

Mobile environment. Table summarizes the results for
the mobile environment. The effectiveness of the recommen-
dations varied strongly among the analyzed devices. The
modified versions of PASSWORDGEN on the S8 and J7 de-
vices exhibited significant improvements: the original versions
consumed 4.7% and 17.34% more energy than the modified
ones, with a large effect size. However, G2 had no recom-
mendations (more on this on Section and thus the results
were the same. GSON exhibited a significant improvement of
5.03% on the J7, with a medium effect size. Nonetheless, the
recommendations of CT+ yielded a statistically significant but
small 0.95% improvement on S8. COMMONS MATH had more
inconsistent results. Although the original version consumed
11.31% more energy than the modified version on S8, the



TABLE VI
RECOMMENDED COLLECTIONS FOR NOTE AND SERVER

TABLE VII
RESULTS FOR THE MOBILE ENVIRONMENT. ENERGY RESULTS ARE RED
FOR THE ORIGINAL VERSIONS AND GREEN FOR THE MODIFIED VERSIONS.

System Original Recommended # of times
Device  System Improv  p-value Mean(J) Stdev  Effect
Development machine: note Size
HashMap HashedMap 13 Commons Math  11.31% 1.2578 92.06 259 0.86
Barbecue ArrayList FastList 8 ’ 20 82.70 9.01
) ) ) FastSearch 0.09% 1.6773 500 332 g4
Battlecry LinkedList ArrayList 2 S8 1,; 25, (l)zg
LinkedList FastList 2 —4 0. -
Google Gson 0.95% 6.42 1629 0.20 0.40
ArrayList FastList 12 PasswordGen ~ 470%  2.38°  10Y° 041 .00
Commons ~ HashSet UnifiedSet 6 16.11 0.65
Math HashMap HashedMap 9
HashMap UnifiedMap 3 Commons Math ~ -033% 24 282233 56
ArrayList TreeList 3 23.90 2.62
. . J7 Google Gson 5.03% 3273 13 '7§ ;'gg 0.44
Google ArrayList FastList 12 };1% .67
Gson HashMap HashedMap 3 PasswordGen 1734%  6.447° 28 090 g7
ConcurrentHashMap ~ ConcurrentHashMapEC 1 10.94 0.76
. . 5
ArrayList FastList 8 G2 Commons Math ~ -121%  0.0001 /22 031 a1
JodaTime  HashMap HashedMap 7 17.42 0.14
ConcurrentHashMap ~ ConcurrentHashMapEC 1
ﬂz::;\"}g; gggﬁ:;mfasmap o considerably across mobile devices, and (ii) although the
Tomeat Hashtable StaticBucketMap 2 results were not as strong as in the desktop environment, for
Vector Synchronized LinkedList ! most cases the recommendations of CT+ either yielded an
Hashtable ConcurrentHashMapEC 48 improvement or did not have a strong impact on the energy
ArrayList FastList 10 :
Xalan Vector Synchronized FastList 3 consump tion of the software systepls.
ArrayList NodeCachingLinkedList 1 Table [VIII| presents the collections recommended for S8,
HashMap HashedMap 1 J7, and G2. COMMONS MATH running on the S8 has more
HashMap HashedMap 52 recommendations for JCF collection implementations than
ArrayList FastList 21 all the software systems we evaluated on the note machine
HashSet UnifiedSet 12 . i
Xstream  HashMap UnifiedMap 7 combined. On the one hand, the only collection recommended
LinkedList TreeList ! by CT+ that is not from the JCF for this software System is
ArrayList LinkedList 1 . .
HashSet TreeSortedSet 1 TreeList from the Apache Commons Collections. On the
) other hand, it follows the pattern of recommending alternatives
Development machine: server R R X
to widely popular collections, e.g., it recommends the use of
HashMap HashedMap 39 ; : : :
Hoontabe ConcurrentHashMap 6 .TreeLlst instead of ArrayLlsij_ .and LinkedHashMap
Tomcat LinkedList TreeList 2 in place of HashMap. For the remaining systems, CT+ made
LinkedList ArrayList 1 few recommendations, 11 for GSON, 2 for PASSWORDGEN,
HashSet LinkedHashSet 1 K
Vector Synchronized ArrayList 1 and 5 for FASTSEARCH. Overall, the recommendations only
Hashtable ConcurrentHashMap(EC) " produced a large effect size for COMMONS MATH and PASS-
Vector Synchronized ArrayList 3 WORDGEN. Furthermore, these were the only systems that
Xalan ArrayList TreeList 2 : : :
HashMap HashedMap | could achieve energy savings gr'eater than 1% in the S8.
HashMap UnifiedMap 1 Among the 22 recommendations of COMMONS MATH on

original versions consumed 1.2% and 0.33% less energy than
the modified ones on G2 and J7. Albeit small, these results
are statistically significant and the effect size for both cases
was negative (medium and large, respectively). This intuitively
means that it was more common for executions of the modified
versions to exhibit greater energy consumption. Finally, FAST-
SEARCH was arguably the most consistent of the software
systems on the mobile environment, in the sense that there was
no practical difference between original and modified versions.
For J7 and G2 the results for the modified and original
versions did not differ in a statitically significantly way. On
the S8, albeit statistically significant, the difference was small
with the original version consuming just 0.09% more than
the modified version. These results suggest that (i) the energy
consumption of different collection implementations varies

J7, 14 were for Eclipse Collections and eight were for Apache
Commons Collections. In all these cases, CT+ recommended
that developers replace ArrayList by an alternative imple-
mentation. For this specific context, the recommendations did
not yield energy savings. CT+ also recommended replacing
ArrayList by alternatives in the case of GSON and PASS-
WORDGEN. These substitutions yielded considerable energy
savings. The G2 differed from the others in this study in
the sense that only one of the software systems exhibited
significant differences between the original and modified ver-
sions. Notwithstanding, the trend of CT+ recommending less
popular collections as replacements for widely-used ones such
as ArrayList and HashMap can still be observed.

VII. DISCUSSION
This section discusses in more depth some of the results

presented in Section



TABLE VIII
RECOMMENDED COLLECTIONS FOR S8, J7, AND G2
System Original Recommended # of times
Device: S8
ArrayList TreeList 8
HashMap LinkedHashMap 7
Commons HashSet LinkedHashSet 6
Math TreeSet LinkedHashSet 2
TreeMap LinkedHashMap 2
ArrayList LinkedList 1
ArrayList FastList 6
HashMap LinkedHashMap 3
Google Gson ArrayList TreeList 1
ConcurrentHashMap Synch LinkedHashMap 1
PasswordGen  ArrayList FastList 2
ArrayList FastList
FastSearch HashMap HashedMap 1
Device: J7
Commons ArrayList FastList 14
Math ArrayList NodeCachingLinkedList 5
ArrayList TreeList 3
ArrayList FastList 7
Google Gson ) TTist NodeCachingLinkedList 2
PasswordGen  ArrayList FastList 5
Device: G2
HashMap LinkedHashMap 12
Commons ArrayList FastList 8
Math ArrayList TreeList 5
CopyOnWriteArrayList ~ Vector 1
ArrayList LinkedList 1

JCF recommendations. The majority of the CT+ recommen-
dations were for collection implementations not in the JCF.
Considering only the statistically significant occurrences, out
of 477 recommendations made in the desktop environment,
only 31 suggested the use of JCF collections (6.5% of the
recommendations). The contrast is less stark in the mobile
environment, where CT+ recommended JCF collection imple-
mentations in one third of the cases (36 out of 107 recommen-
dations). If we aggregate over all of these recommendations,
the JCF was recommended in 11.47% of the cases.

Popular collections and energy efficiency. Our results
indicate that there seem to be more energy-efficient alternatives
to some widely popular collection implementations. For the
desktop environment, CT+ performed 121 recommendations
to replace uses of Hashtable, 140 for HashMap, 20 for
HashSet, 8 for Vector, and 178 for ArrayList. Overall,
those recommendations amount to 97.9% of all the statistically
significant recommendations CT+ made in that environment.
This percentage is consistent with the popularity of those JCF
collections (Table ; since they are used often, there will be
many recommendations to replace them by alternatives. On the
other hand, CT+ did not recommend the use of any of these
four collection implementations: Hashtable, HashMap,
HashSet, and Vector. ArrayList was recommended
three times, all of them as a replacement for LinkedList,
a collection that is not efficient for random accesses. These

results, combined with the significant improvements in en-
ergy efficiency that could be achieved by following CT+’s
recommendations in the desktop environment, suggest that
these collections might not be good choices in scenarios where
energy efficiency has a high priority.

As pointed out previously, in the mobile environment
CT+ recommended the use of JCF collections more of-
ten. Nevertheless, a similar trend can be observed. CT+
suggested alternatives to HashMap 23 times, to HashSet
6 times, and to ArrayList 72 times. That amounts to
94.39% of all its recommendations. At the same time, not
once did it recommend the use of these collections. Further-
more, Vector was recommended once, as a replacement for
CopyOnWriteArrayList, a thread-safe collection that is
efficient for reads but extremely inefficient for writes [3].

Given the importance of the aforementioned collections,
we conducted a more in-depth investigation into why
ArrayList was replaced an expressive number of times and
only rarely recommended. We focus on ArrayList because
it is arguably the most popular collection implementation
in the Java language. Two factors help explain the lack
of recommendations in its favor. First, the most common
operations in the software systems for list collections are
add (value) and iteration (random). ArrayList
does not perform these operations well on most devices. In
particular, FastList was explicitly designed as an alter-
native to ArrayList that performs those operations more
efficiently, since it does not support concurrent modifica-
tion exceptions. As a consequence, FastList can “provide
optimized internal iterators which use direct access against
the array of items.” [14]. This kind of direct access is
not allowed by ArrayList. Second, there are many cases
where ArrayList is the most efficient alternative, but it is
already being used. That is what occurred, for example, for
FastSearch and PasswordGen in the G2. In other words,
due to the widespread use of this collection implementation,
in most cases where it would be the best option, it is already
being employed and thus no benefits can be achieved.

Different devices matter. The recommendations and results
varied heavily across devices, even when executing the same
application. Although for some specific applications, such as
FASTSEARCH, our tool made similar recommendations across
devices and those recommendations did not impact energy effi-
ciency, for most software systems different devices resulted in
different recommendations. For instance, for XALAN on note,
CT+ recommended that 10 ArrayList instances be changed
to FastList and one to NodeCachingLinkedList.
However, for server, it made recommendations for only
two instances of ArrayList and suggested the use of
TreeList. In both machines, energy consumption decreased.

In addition, the effectiveness of CT+’s recommendations for
the same software systems varied across machines. XSTREAM
presents an interesting example. The recommendations made
by CT+ did not result in a version of the software system that
had a statistically significant difference in energy consumption
on the mobile devices, even if the modified versions consumed



less energy. On the other hand, on note, the energy consump-
tion of the modified version exhibited a statistically significant
difference (with a p-value of 3.127!3) when compared to
the original version. Also, the effect was large (0.94). This
difference may be attributed to the number of implementation
changes as well as differences between devices. On note,
our tool suggested 95 modifications to XSTREAM while the
mobile device with most changes, G2, only had 41. Those
changes also did not target the same implementations; On
note, we replaced ArrayList by FastList 21 times
and by LinkedList one time. On G2, ArrayList was
replaced by TreeList just three times. Those devices had
different energy profiles and by the number of changes, we
noticed that the implementations used on the mobile versions
were already optimized for that environment, which was not
the case for the desktop environment.

Dominance among collection implementations. Only 20
out of the 40 possible implementations were recommended
by CT+. When trying to understand this behavior, we ob-
served that some collection implementations consistently dom-
inate [34] others. Given two collection implementations C; =
(N,T,S,01,09,...,0,) and Cy = (N',T,S5,01,09,...,0n)
with energy profiles (e, es,...,e,) and (e,€h,...,el), re-
spectively, we say that C; dominates C5 if e; < e} for all
1 <4 < n. Since every dominated collection implementation
has a dominating alternative collection implmementation, it
will never be recommended by CT+.

Figure depicts dominance relations for the thread-
safe Map implementations on the server machine.
Based on this figure, only four thread-safe Map
implementations can be recommended by CT+ on the
server machine: ConcurrentHashMap, Synchronized
LinkedHashMap, ConcurrentHashMapEC, and
Synchronized UnifiedMap. These are the collections
that are not dominated by any other collection. Furthermore,
as the figure shows, Hashtable is dominated by
ConcurrentHashMapEC, even though Hashtable itself
also dominates Synchronized TreeMap. Therefore,
in server, instances of Synchronized TreeMap
and Hashtable are never recommended, in favor of
ConcurrentHashMapEC. More specifically, we observed
that Hashtable was dominated on every device that
we experimented with. This result, combined with the
well-known scalability limitations of this collection [3l],
and the plethora of more efficient alternatives suggest
that it should rarely be used in practice. Implementations
such as ConcurrentSkipListSet, Synchronized
TreeMap, and Synchronized UnifiedMap, were
dominated in three out of four devices.

Threats to Validity. Although we conducted experiments in
a number of different devices, we did not use all possible
devices available, which is far from feasible. We selected
representative devices with very different hardware charac-
teristics (from a mobile phone with 1.5GB of RAM to a
server with 256GB of RAM). Second, our findings cannot be
generalized to other software applications that use collections.

Concurrent Synchronized Concurrent Synchronized
HashMap LinkedHashMap | | HashMap(EC) UnifiedMap
] [ I
v 2 v
) Synchronized
StaticBucketMap HashMap Hashtable
I
Synchronized

| Concurrent

SkipListMap TreeMap

Fig. 2. Order of dominance between the thread-safe Map implementations on
server. Arrows point from the dominating collection to the dominated one.

We then chose representative software systems from very
different domains (e.g., a XML serializer, a webserver, and
mobile apps). Still, the chosen software systems are non-
trivial, e.g., TOMCAT has more than 640k lines of code and
has been used in multiple studies [5], [9], [L7]. Even though
we observed an overall good energy savings with our tool,
for some software systems it was not possible to improve the
energy consumption reported in other studies. We hypothesize
this happens due to the care we took of preventing recommen-
dations with different thread-safety. We checked that among
the recommendations on study [17], there were cases where a
thread-safe collection was replaced by a non-thread-safe one.
A more comprehensive investigation is necessary. Similarly,
our tool does not guarantee thread-safety when thread-safe
collections are performing compounded operations [35] (e.g.,
verifying if an item is stored in a collection before adding
it). The software constructs versions (such as libraries and
applications) may influence the recommendations made by
CT+. The configurations and source code are available at
https://energycollections.github.io/. Finally, we did not per-
form experiments with actual developers, so it is unclear
whether developers would face any difficulties while using the
tool or whether they would find the recommendations useful.

VIII. CONCLUSION

With this work, we present our vision of a general purpose
approach to aid non-specialist developers to create energy-
aware software. This vision was instantiated within a tool to
recommend energy-efficient collection implmementations. We
evaluated our tool in five different devices running twelve
different software systems (two mobile, seven desktop, and
three on both environments). Although some cases the recom-
mendations provided did not have a direct impact on energy
consumption, our tool was able to reduce energy consumption
of some applications up to 17.34%. Our results suggest that
some of the most popular collections implementations (e.g.,
ArrayList, HashMap, and Hashtable) are often not the
most energy-efficient ones. As future work we plan to use our
tool in a real world setting to understand whether developers
could, indeed, take advantage of it.
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